Edit Template

ETS 9903-JS002 FULLY COMPLIANT CDM TEST SYSTEM

JANUARY 2, 2018 – As an innovative leader in the design of electrostatic equipment for the past 45 years, Electro-Tech Systems (ETS) of Glenside, PA is pleased to introduce the 9903-JS002 Charged Device Model (CDM) Test System. This new system is fully compliant with Specification ANSI/ESD/JEDEC JS-002-2014 and related methods offering both large and small disk calibration compliance. The system is designed to work with all ETS 9910 Series ESD Simulators and brings fully compliant induced CDM testing capabilities to your laboratory and production department. As a customer driven organization providing high quality, value driven solutions, ETS continually strives to improve our products and services by assisting customers achieve their goals and stay ahead of industry trends and the competition. ETS offers the industry’s most respected line of discharge simulators providing full compliance for HBM, MM, HMM and CDM. For additional information and an opportunity to work with the best systems on the market please contact ETS at sales@ets2.com.

Considerations When Selecting a Controlled Environment Chamber

Any size chamber can be configured to perform virtually any environmental control function. The combination of Chamber, Controller and Operating Systems determines the performance of the environment. Understanding the characteristics and interaction of these components can be the difference between years of trouble free service and limited performance. Reviewing the following information will allow the end user to make a better informed decision when selecting or designing an environment. Selecting Your Chamber Standard chambers are less expensive than custom systems. The chamber you select should be large enough to accommodate the samples, equipment or process along with any internally mounted systems (such as a heater assembly, fan, etc.). Sufficient space must also be given to allow proper circulation. When specifying chamber size, remember that the internal dimensions will typically be ½” to ¾” less than the external dimensions due to material thickness. System access ports, circulating fans, doors, power outlets, gloves, sensors, etc. will also utilize a portion of the internal space. All ETS chambers include an access door along with system and cable pass-through ports. Chambers can be ordered with or without glove ports. Standard chambers can be modified to meet a specific requirement. Custom chambers, fabricated from acrylic or other materials, can be designed to meet virtually any customer requirement including storage, testing, weighing and fabrication. Chambers can be designed to house a specific item or can be built within a piece of equipment to provide a controlled testing environment. To assist the user in selecting a system ETS offers several standard Option Packages for each series based on typical user applications. Any chamber package can be modified to meet a customer’s specific needs. ETS currently offers four standard and two custom chamber series. Series 5503 4.75 cu. ft. (106 l) Series 5506 9.0 cu. ft. (255 l) Series 5518/5532 9.4 cu. ft. (266 l) Series 5500-8000 Custom Chambers Selecting a Controller Controller pricing, functions and features vary widely. When making a selection first determine the specific functions that are needed. Single function controllers can be user adjustable or factory preset to a single level. Dual function controllers, which control both humidity and temperature, offer the best combination of features and price. Selecting a controller with additional capabilities such as temperature control or communication boards allows future expansion by simply adding the required operating system when needed. Microprocessor PID controllers offer the greatest accuracy and can be used with or without software. All ETS controllers include a sensor. ETS currently offers the following controller types: Microprocessor Single Function Controller PID Control (Incr. & Dec.) Humidity or Temp Dual Function Controller PID Control (Incr. & Dec.) Humidity and Temp Dual Function/Dual Display PID Displays Both Level & Set Point Do not assume the operational range of the controller and sensor will be the operational range of the chamber and operating systems. For example, a controller specification may state that it can operate from 0-100% RH and from 0-100ºC. This means that this controller has the ability to perform over this range. The chamber and operating systems will have different ranges. ETS acrylic chambers are rated from 0 to 55ºC and each operating system will have its own specific performance range. The ability of the operating systems to humidify, dehumidify, heat or cool is determined by many factors covered later in this article. It is the combination of these three components that determines the performance of your system. Selecting Operating Systems (Heating, Cooling, Humidification & Dehumidification) Several choices are usually available for each function. Each system has its own unique benefits and limitations. Standard operating systems from ETS include humidification, dehumidification, heating, cooling and oxygen monitoring. System selection should be based on your conditioning time requirement (long term, short term), desired operational range and the range of multiple systems used at the same time (what humidity level needs to be maintained at what temperature and for how long). Please note that the specified range of each system is independent of what can be achieved when used in combination with other systems. Ultimately, the levels that can be achieved depend on the operating system selected, size of the environment, conditioning time, equipment or samples inside the chamber, ambient conditions and set-point. The operational range of ETS systems are always specified at ambient conditions. While an environment may be able to maintain 5 to 95% RH at ambient laboratory conditions, when the temperature is elevated to 55ºC it may only be able to maintain 60-70% RH. Before selecting an operating system it is critical to know the highest humidity/temperature and the lowest humidity/temperature combinations required. This will allow the appropriate systems to be recommended or selected. Accuracy and stability are important factors which can vary greatly from system to system. For example when cooling, liquid CO2 offers the user a low cost, short-term solution but sacrifices stability and humidity control. Thermoelectric cooling systems offer unmatched stability and precision but are expensive and provide limited cooling capability. Users often ask, “How long will the desiccant, deionized water, etc. last”. The length of time varies greatly for each location and application. It is influenced by the ambient conditions, test material placed inside the chamber, length of conditioning time, set-point, how frequently and for how long the door is opened, sealing of the ports and many other factors. Most operating systems require periodic maintenance (filling, changing or cleaning) to maintain peak performance. Before selecting a system, check and see if you have access to any existing systems at your facility. Dry nitrogen, if available, is an excellent choice for lowering humidity levels to less than 2% RH. Renewable desiccant, dry house air or self-regenerating molecular sieve systems may also be available for dehumidification. Computer Control Software can be a very useful addition to your environmental control capabilities and is available as an option for all ETS microprocessor controllers. Adding computer control gives the end user the ability to monitor environmental stability over virtually any period of time and to remotely change the parameters. For some